Hot topics close

Insights into vaccines for elderly individuals: from the impacts of immunosenescence to delivery strategies | npj Vaccines

Insights into vaccines for elderly individuals from the impacts of 
immunosenescence to delivery strategies  npj Vaccines
npj Vaccines - Insights into vaccines for elderly individuals: from the impacts of immunosenescence to delivery strategies
  • Li, X. et al. Inflammation and aging: signaling pathways and intervention therapies. Signal Transduct. Target Ther. 8, 239 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • United Nations. Department of Economic and Social Affairs, Population Division (2019). World Population Ageing 2019: Highlights (ST/ESA/SER.A/430) (2022).

  • Gralinski, L. E. & Menachery, V. D. Return of the Coronavirus: 2019-nCoV. Viruses 12, 135 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Koff, W. C. et al. Accelerating next-generation vaccine development for global disease prevention. Science 340, 1232910 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Mascola, J. R. & Fauci, A. S. Novel vaccine technologies for the 21st century. Nat. Rev. Immunol. 20, 87–88 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Hou, Y. et al. Advanced subunit vaccine delivery technologies: from vaccine cascade obstacles to design strategies. Acta Pharm. Sin. B 13, 3321–3338 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cunningham, A. L., McIntyre, P., Subbarao, K., Booy, R. & Levin, M. J. Vaccines for older adults. BMJ 372, n188 (2021).

    Article  PubMed  Google Scholar 

  • Bell, M. R. & Kutzler, M. A. An old problem with new solutions: strategies to improve vaccine efficacy in the elderly. Adv. Drug Deliv. Rev. 183, 114175 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Osterholm, M. T. Efficacy and effectiveness of influenza vaccines: a systematic review and meta-analysis. Lancet Infect. Dis. 12, 36–44 (2012).

    Article  PubMed  Google Scholar 

  • Walford, R. L. The immunologic theory of aging. Gerontologist 4, 195–197 (1964).

    Article  CAS  PubMed  Google Scholar 

  • Willyard, C. How anti-ageing drugs could boost COVID vaccines in older people. Nature 586, 352–354 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Qin, X., Jian, D. & Yi, C. Role of CD8+ T lymphocyte cells: interplay with stromal cells in tumor microenvironment. Acta Pharm. Sin. B 11, 1365–1378 (2021).

    Article  Google Scholar 

  • Riese, P. et al. Distinct immunological and molecular signatures underpinning influenza vaccine responsiveness in the elderly. Nat. Commun. 13, 6894 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roukens, A. H. et al. Elderly subjects have a delayed antibody response and prolonged viraemia following yellow fever vaccination: a prospective controlled cohort study. PloS One 6, e27753 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulz, A. R. et al. Low thymic activity and dendritic cell numbers are associated with the immune response to primary viral infection in elderly humans. J. Immunol. 195, 4699–4711 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Ding, Y., Li, Z., Jaklenec, A. & Hu, Q. Vaccine delivery systems toward lymph nodes. Adv. Drug Deliv. Rev. 179, 113914 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lefebvre, J. S., Masters, A. R., Hopkins, J. W. & Haynes, L. Age-related impairment of humoral response to influenza is associated with changes in antigen specific T follicular helper cell responses. Sci. Rep. 6, 25051 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, J., Deng, J. C. & Goldstein, D. R. How aging impacts vaccine efficacy: known molecular and cellular mechanisms and future directions. Trends Mol. Med. 28, 1100–1111 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hadamitzky, C. et al. Age-dependent histoarchitectural changes in human lymph nodes: an underestimated process with clinical relevance? J. Anat. 216, 556–562 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Agrawal, A. et al. Altered innate immune functioning of dendritic cells in elderly humans: a role of phosphoinositide 3-kinase-signaling pathway. J. Immunol. 178, 6912–6922 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y., Guo, X., Hu, B., He, P. & Feng, M. Generated SecPen_NY-ESO-1_ubiquitin-pulsed dendritic cell cancer vaccine elicits stronger and specific T cell immune responses. Acta Pharm. Sin. B 11, 476–487 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Eisenbarth, S. C. Dendritic cell subsets in T cell programming: location dictates function. Nat. Rev. Immunol. 19, 89–103 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heath, W. R., Kato, Y., Steiner, T. M. & Caminschi, I. Antigen presentation by dendritic cells for B cell activation. Curr. Opin. Immunol. 58, 44–52 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., Geiger, H. & Rudolph, K. L. Immunoaging induced by hematopoietic stem cell aging. Curr. Opin. Immunol. 23, 532–536 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Panda, A. et al. Age-associated decrease in TLR function in primary human dendritic cells predicts influenza vaccine response. J. Immunol. 184, 2518–2527 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Leleux, J., Atalis, A. & Roy, K. Engineering immunity: modulating dendritic cell subsets and lymph node response to direct immune-polarization and vaccine efficacy. J. Control. Release 219, 610–621 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackaman, C. et al. Targeting macrophages rescues age-related immune deficiencies in C57BL/6J geriatric mice. Aging Cell 12, 345–357 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Prieto, L. I. et al. Senescent alveolar macrophages promote early-stage lung tumorigenesis. Cancer Cell 41, 1261–1275.e6 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., Yang, J. & Kopecek, J. Nanomedicines in B cell-targeting therapies. Acta Biomater. 137, 1–19 (2022).

    Article  PubMed  Google Scholar 

  • Frasca, D. & Blomberg, B. B. Aging affects human B cell responses. J. Clin. Immunol. 31, 430–435 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Pritz, T. et al. Plasma cell numbers decrease in bone marrow of old patients. Eur. J. Immunol. 45, 738–746 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Cancro, M. P. Age-associated B cells. Annu. Rev. Immunol. 38, 315–340 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Yam-Puc, J. C. et al. Age-associated B cells predict impaired humoral immunity after COVID-19 vaccination in patients receiving immune checkpoint blockade. Nat. Commun. 14, 3292 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen, C. D. et al. Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5. Nat. Immunol. 5, 943–952 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Wols, H. A. et al. Migration of immature and mature B cells in the aged microenvironment. Immunology 129, 278–290 (2010).

    Article  PubMed  Google Scholar 

  • Frasca, D., Blomberg, B. B., Garcia, D., Keilich, S. R. & Haynes, L. Age-related factors that affect B cell responses to vaccination in mice and humans. Immunol. Rev. 296, 142–154 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lefebvre, J. S. et al. The aged microenvironment contributes to the age‐related functional defects of CD4 T cells in mice. Aging Cell 11, 732–740 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Silva-Cayetano, A. et al. Spatial dysregulation of T follicular helper cells impairs vaccine responses in aging. Nat. Immunol. 24, 1124–1137 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khurana, S., Frasca, D., Blomberg, B. & Golding, H. AID activity in B cells strongly correlates with polyclonal antibody affinity maturation in-vivo following pandemic 2009-H1N1 vaccination in humans. PLoS Pathog. 8, e1002920 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stiasny, K., Aberle, J. H., Keller, M., Grubeck-Loebenstein, B. & Heinz, F. X. Age affects quantity but not quality of antibody responses after vaccination with an inactivated flavivirus vaccine against tick-borne encephalitis. PLoS One 7, e34145 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goronzy, J. J. & Weyand, C. M. Understanding immunosenescence to improve responses to vaccines. Nat. Immunol. 14, 428–436 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, X., Liu, Q. & Xiang, A. P. CD8+CD28- T cells: not only age-related cells but a subset of regulatory T cells. Cell Mol. Immunol. 15, 734–736 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumagai, S. et al. The PD-1 expression balance between effector and regulatory T cells predicts the clinical efficacy of PD-1 blockade therapies. Nat. Immunol. 21, 1346–1358 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Gustafson, C. E., Weyand, C. M. & Goronzy, J. J. T follicular helper cell development and functionality in immune ageing. Clin. Sci. 132, 1925–1935 (2018).

    Article  CAS  Google Scholar 

  • Herati, R. S. et al. Circulating CXCR5+PD-1+ response predicts influenza vaccine antibody responses in young adults but not elderly adults. J. Immunol. 193, 3528–3537 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Franceschi, C. et al. Inflamm aging: an evolutionary perspective on immunosenescence. Ann. N.Y. Acad. Sci. 908, 244–254 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Franceschi, C. et al. Inflammaging and ‘Garb-aging. Trends Endocrinol. Metab. 28, 199–212 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Gilroy, D. & De Maeyer, R. New insights into the resolution of inflammation. Semin. Immunol. 27, 161–168 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Chambers, E. S. & Akbar, A. N. Can blocking inflammation enhance immunity during aging? J. Allergy Clin. Immunol. 145, 1323–1331 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Hadrup, S. R. et al. Longitudinal studies of clonally expanded CD8 T cells reveal a repertoire shrinkage predicting mortality and an increased number of dysfunctional cytomegalovirus-specific T cells in the very elderly. J. Immunol. 176, 2645–2653 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Frasca, D., Blomberg, B. B. & Paganelli, R. Aging, obesity, and inflammatory age-related diseases. Front. Immunol. 8, 1745 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim, K. A., Jeong, J. J., Yoo, S. Y. & Kim, D. H. Gut microbiota lipopolysaccharide accelerates inflamm-aging in mice. BMC Microbiol 16, 9 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Claesson, M. J. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 488, 178–184 (2012).

    Article  CAS  PubMed  Google Scholar 

  • De Maeyer, R. P. H. et al. Blocking elevated p38 MAPK restores efferocytosis and inflammatory resolution in the elderly. Nat. Immunol. 21, 615–625 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lasry, A. & Ben-Neriah, Y. Senescence-associated inflammatory responses: aging and cancer perspectives. Trends Immunol. 36, 217–228 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Gulen, M. F. et al. cGAS-STING drives ageing-related inflammation and neurodegeneration. Nature 620, 374–380 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gritsenko, A., Green, J. P., Brough, D. & Lopez-Castejon, G. Mechanisms of NLRP3 priming in inflammaging and age-related diseases. Cytokine Growth Factor Rev. 55, 15–25 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim, S.O. et al. Deubiquitination and stabilization of PD-L1 by CSN5. Cancer Cell, 925–939 (2016).

  • Hamilton, J. A. G. et al. Interleukin-37 improves T-cell-mediated immunity and chimeric antigen receptor T-cell therapy in aged backgrounds. Aging Cell 20, e13309 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, X., Baumel, M., Männel, D. N., Howard, O. M. Z. & Oppenheim, J. J. Interaction of TNF with TNF receptor type 2 promotes expansion and function of mouse CD4+CD25+ T regulatory cells. J. Immunol. 179, 154–161 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Watanabe, R., Shirai, T., Hong, N., Zhang, H. & Weyand, C. M. Pyruvate controls the checkpoint inhibitor PD-L1 and suppresses T cell immunity. J. Clin. Investig. 127, 2725–2738 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, J. H. et al. Prostaglandin E2 and programmed cell death 1 signaling coordinately impair CTL function and survival during chronic viral infection. Nat. Med. 21, 327–334 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).

    Article  PubMed  Google Scholar 

  • Guo, J. et al. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduct. Target Ther. 7, 391 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen, M., Rubinsztein, D. C. & Walker, D. W. Autophagy as a promoter of longevity: insights from model organisms. Nat. Rev. Mol. Cell Biol. 19, 579–593 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, H. et al. Polyamines control eIF5A hypusination, TFEB translation, and autophagy to reverse B cell senescence. Mol. Cell. 76, 110–125.e9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aman, Y. et al. Autophagy in healthy aging and disease. Nat. Aging 1, 634–650 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim, J., Kundu, M., Viollet, B. & Guan, K. L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13, 132–141 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cirone, M. Perturbation of bulk and selective macroautophagy, abnormal UPR activation and their interplay pave the way to immune dysfunction, cancerogenesis and neurodegeneration in ageing. Ageing Res. Rev. 58, 101026 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y. et al. In situ manipulation of dendritic cells by an autophagy-regulative nanoactivator enables effective cancer immunotherapy. ACS Nano 13, 7568–7577 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Wang, S. et al. Exploration of antigen-induced CaCO3 nanoparticles for therapeutic vaccine. Small 14, e1704272 (2018).

    Article  PubMed  Google Scholar 

  • Hubbard, V. M. et al. Macroautophagy regulates energy metabolism during effector T cell activation. J. Immunol. 185, 7349–7357 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Fan, J., Feng, Z. & Chen, N. Spermidine as a target for cancer therapy. Pharmacol. Res. 159, 104943 (2020).

    Article  CAS  PubMed  Google Scholar 

  • De Risi, M. et al. Mechanisms by which autophagy regulates memory capacity in ageing. Aging Cell 19, e13189 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma, T. et al. Low-dose metformin targets the lysosomal AMPK pathway through PEN2. Nature 603, 159–165 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kroemer, G. & Zitvogel, L. CD4+ T cells at the center of inflammaging. Cell Metab. 32, 4–5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakravarti, D., LaBella, K. A. & DePinho, R. A. Telomeres: history, health, and hallmarks of aging. Cell 184, 306–322 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanna, A. et al. An intercellular transfer of telomeres rescues T cells from senescence and promotes long-term immunological memory. Nat. Cell Biol. 24, 1461–1474 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gravenstein, S. et al. Comparative effectiveness of high-dose versus standard-dose influenza vaccination on numbers of US nursing home residents admitted to hospital: a cluster-randomised trial. Lancet Respir. Med. 5, 738–746 (2017).

    Article  PubMed  Google Scholar 

  • Couch, R. B. et al. Safety and immunogenicity of a high dosage trivalent influenza vaccine among elderly subjects. Vaccine 25, 7656–7663 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkinson, K. et al. Efficacy and safety of high-dose influenza vaccine in elderly adults: a systematic review and meta-analysis. Vaccine 35, 2775–2780 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Goronzy, J. J., Fang, F., Cavanagh, M. M., Qi, Q. & Weyand, C. M. Naive T cell maintenance and function in human aging. J. Immunol. 194, 4073–4080 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Sun, Y. et al. Metal-organic framework nanocarriers for drug delivery in biomedical applications. Nanomicro Lett. 12, 103 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hong, X. et al. The pore size of mesoporous silica nanoparticles regulates their antigen delivery efficiency. Sci. Adv. 6, eaaz4462 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia, Y. et al. Exploiting the pliability and lateral mobility of Pickering emulsion for enhanced vaccination. Nat. Mater. 17, 187–194 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Liu, K. et al. A novel multifunctional vaccine platform with dendritic cell-targeting and pH-responsive for cancer immunotherapy: antigen-directed biomimetic fabrication of a cabbage-like mannatide-zinc-antigen hybrid microparticles. Chem. Eng. J. 426, 130867 (2021).

    Article  CAS  Google Scholar 

  • Zhao, J. et al. A minimalist binary vaccine carrier for personalized postoperative cancer vaccine therapy. Adv. Mater. 34, e2109254 (2022).

    Article  PubMed  Google Scholar 

  • Pereira, B., Xu, X. N. & Akbar, A. N. Targeting inflammation and immunosenescence to improve vaccine responses in the rlderly. Front. Immunol. 11, 583019 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauer, K. B., Borrow, R. & Blancharda, T. J. Multivalent and multipathogen viral vector vaccines. Clin. Vaccin. Immunol. 24, e00298–16 (2017).

    Article  CAS  Google Scholar 

  • Lewnard, J. A. et al. Effectiveness of 13-Valent pneumococcal conjugate vaccine against medically attended lower respiratory tract infection and pneumonia among older adults. Clin. Infect. Dis. 75, 832–841 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Lawrence, H. et al. Effectiveness of the 23-valent pneumococcal polysaccharide vaccine against vaccine serotype pneumococcal pneumonia in adults: a case-control test-negative design study. PLoS Med. 17, e1003326 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez-Davies, J. E. et al. Administration of multivalent influenza virus recombinant hemagglutinin vaccine in combination-adjuvant elicits broad reactivity beyond the vaccine components. Front. Immunol. 12, 692151 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reed, S. G., Orr, M. T. & Fox, C. B. Key roles of adjuvants in modern vaccines. Nat. Med. 19, 1597–1608 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Pulendran, B., Arunachalam, P. S. & O’Hagan, D. T. Emerging concepts in the science of vaccine adjuvants. Nat. Rev. Drug Discov. 20, 454–475 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peletta, A., Lemoine, C., Courant, T., Collin, N. & Borchard, G. Meeting vaccine formulation challenges in an emergency setting: towards the development of accessible vaccines. Pharmacol. Res. 189, 106699 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Nanishi, E. et al. Precision vaccine adjuvants for older adults: a scoping review. Clin. Infect. Dis. 75, S72–S80 (2022).

    Article  PubMed  Google Scholar 

  • Ciabattini, A. et al. Vaccination in the elderly: the challenge of immune changes with aging. Semin. Immunol. 40, 83–94 (2018).

    Article  PubMed  Google Scholar 

  • Nicolay, U., Heijnen, E., Nacci, P., Patriarca, P. A. & Leav, B. Immunogenicity of aIIV3, MF59-adjuvanted seasonal trivalent influenza vaccine, in older adults ≥65 years of age: meta-analysis of cumulative clinical experience. Int. J. Infect. Dis. 85S, S1–S9 (2019).

    Article  PubMed  Google Scholar 

  • Isakova Sivak, I. & Rudenko, L. Cross-protective potential of a MF59-adjuvanted quadrivalent influenza vaccine in older adults. Lancet Infect. Dis. 21, 900–901 (2021).

    Article  PubMed  Google Scholar 

  • Morel, S. et al. Adjuvant System AS03 containing α-tocopherol modulates innate immune response and leads to improved adaptive immunity. Vaccine 29, 2461–2473 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Yam, K. K. et al. AS03-adjuvanted, very-low-dose influenza vaccines induce distinctive immune responses compared to unadjuvanted high-dose vaccines in BALB/c mice. Front. Immunol. 6, 207 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Dendouga, N., Fochesato, M., Lockman, L., Mossman, S. & Giannini, S. L. Cell-mediated immune responses to a varicella-zoster virus glycoprotein E vaccine using both a TLR agonist and QS21 in mice. Vaccine 30, 3126–3135 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Nam, H. J. et al. An adjuvanted zoster vaccine elicits potent cellular immune responses in mice without QS21. NPJ Vaccines 7, 45 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lal, H. et al. Efficacy of an adjuvanted herpes zoster subunit vaccine in older adults. N. Engl. J. Med. 372, 2087–2096 (2015).

    Article  PubMed  Google Scholar 

  • Renshaw, M. et al. Cutting Edge: impaired toll-like receptor expression and function in aging. J. Immunol. 169, 4697–4701 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Metcalf, T. U. et al. Global analyses revealed age-related alterations in innate immune responses after stimulation of pathogen recognition receptors. Aging Cell 14, 421–432 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janssen, J. M., Jackson, S., Heyward, W. L. & Janssen, R. S. Immunogenicity of an investigational hepatitis B vaccine with a toll-like receptor 9 agonist adjuvant (HBsAg-1018) compared with a licensed hepatitis B vaccine in subpopulations of healthy adults 18-70 years of age. Vaccine 33, 3614–3618 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Lim, J. S. et al. Flagellin-dependent TLR5/caveolin-1 as a promising immune activator in immunosenescence. Aging Cell 14, 907–915 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denton, A. E. et al. Targeting TLR4 during vaccination boosts MAdCAM-1+lymphoid stromal cell activation and promotes the aged germinal center response. Sci. Immunol. 7, eabk0018 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zareian, N. et al. Triggering of toll-like receptors in old individuals. Relevance for vaccination. Curr. Pharm. Des. 25, 4163–4167 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Wu, T. Y. et al. Rational design of small molecules as vaccine adjuvants. Sci. Transl. Med. 6, 263ra160 (2014).

    Article  PubMed  Google Scholar 

  • Ross, K. A. et al. Novel nanoadjuvants balance immune activation with modest inflammation: implications for older adult vaccines. Immun. Ageing 20, 28 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ananya, A. et al. Just right” combinations of adjuvants with nanoscale carriers activate aged dendritic cells without overt inflammation. Immun. Ageing 20, 10 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nanishi, E., Borriello, F., O’Meara, T. R., Mcgrath, M. E. & Dowling, D. J. An aluminum hydroxide:CpG adjuvant enhances protection elicited by a SARS-CoV-2 receptor-binding domain vaccine in aged mice. Sci. Transl. Med. 14, eabj5305 (2021).

    Article  Google Scholar 

  • Lanna, A. et al. A sestrin-dependent Erk-Jnk-p38 MAPK activation complex inhibits immunity during aging. Nat. Immunol. 18, 354–363 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy, R. B. et al. Immunosenescence-related transcriptomic and immunologic changes in older individuals following influenza vaccination. Front. Immunol. 7, 450 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Mannick, J. B. et al. mTOR inhibition improves immune function in the elderly. Sci. Transl. Med. 6, 268ra179 (2014).

    Article  PubMed  Google Scholar 

  • Song, S., Lam, E. W. F., Tchkonia, T., Kirkland, J. L. & Sun, Y. Senescent cells: emerging targets for human aging and age-related diseases. Trends Biochem. Sci. 45, 578–592 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wissler Gerdes, E. O., Misra, A., Netto, J. M. E., Tchkonia, T. & Kirkland, J. L. Strategies for late phase preclinical and early clinical trials of senolytics. Mech. Ageing Dev. 200, 111591 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Kirkland, J. L. & Tchkonia, T. Senolytic drugs: from discovery to translation. J. Intern. Med. 288, 518–536 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Q., Li, S., Chen, F., Zeng, R. & Tong, R. Targeted delivery strategy: a beneficial partner for emerging senotherapy. Biomed. Pharmacother. 155, 113737 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Chen, S. et al. Metformin in aging and aging-related diseases: clinical applications and relevant mechanisms. Theranostics 12, 2722–2740 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bharath, L. P. et al. Metformin enhances autophagy and normalizes mitochondrial function to alleviate aging-associated inflammation. Cell Metab. 32, 44–55.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hung, I. F. et al. Immunogenicity of intradermal trivalent influenza vaccine with topical imiquimod: a double blind randomized controlled trial. Clin. Infect. Dis. 59, 1246–1255 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Pettersen, F. O. et al. An exploratory trial of cyclooxygenase type 2 inhibitor in HIV-1 infection: downregulated immune activation and improved T cell-dependent vaccine responses. J. Virol. 85, 6557–6566 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madeo, F., Eisenberg, T., Pietrocola, F. & Kroemer, G. Spermidine in health and disease. Science 359, eaan2788 (2018).

    Article  PubMed  Google Scholar 

  • Nakamura, A. et al. Symbiotic polyamine metabolism regulates epithelial proliferation and macrophage differentiation in the colon. Nat. Commun. 12, 2105 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aggarwal, V. et al. Molecular mechanisms of action of epigallocatechin gallate in cancer: recent trends and advancement. Semin. Cancer Biol. 80, 256–275 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Yuan, H. et al. The phytochemical epigallocatechin gallate prolongs the lifespan by improving lipid metabolism, reducing inflammation and oxidative stress in high-fat diet-fed obese rats. Aging Cell 19, e13199 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tavenier, J. et al. Alterations of monocyte NF-kappaB p65/RelA signaling in a cohort of older medical patients, age-matched controls, and healthy young adults. Immun. Ageing 17, 25 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheong, Y. et al. Epigallocatechin-3-Gallate as a novel vaccine adjuvant. Front. Immunol. 12, 769088 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herati, R. S. et al. Vaccine-induced ICOS+CD38+ circulating Tfh are sensitive biosensors of age-related changes in inflammatory pathways. Cell Rep. Med. 2, 100262 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Carrasco, E. et al. The role of T cells in age-related diseases. Nat. Rev. Immunol. 22, 97–111 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Heitmann, J. S. et al. A COVID-19 peptide vaccine for the induction of SARS-CoV-2 T cell immunity. Nature 601, 617–622 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Hu, Y. et al. Synergistic tumor immunological strategy by combining tumor nanovaccine with gene-mediated extracellular matrix scavenger. Biomaterials 252, 120114 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Mittelbrunn, M. & Kroemer, G. Hallmarks of T cell aging. Nat. Immunol. 22, 687–698 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Fear, V. S. et al. Tumour draining lymph node-generated CD8 T cells play a role in controlling lung metastases after a primary tumour is removed but not when adjuvant immunotherapy is used. Cancer Immunol. Immunother. 70, 3259 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, X., Hoft, D. F. & Peng, G. Senescent T cells within suppressive tumor microenvironments: emerging target for tumor immunotherapy. J. Clin. Investig. 130, 1073–1083 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, C. et al. A nanovaccine for antigen self-presentation and immunosuppression reversal as a personalized cancer immunotherapy strategy. Nat. Nanotechnol. 17, 531–540 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Antonangeli, F., Zingoni, A., Soriani, A. & Santoni, A. Senescent cells: living or dying is a matter of NK cells. J. Leukoc. Biol. 105, 1275–1283 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary, N., Weissman, D. & Whitehead, K. A. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat. Rev. Drug Discov. 20, 817–838 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman, J. et al. Neutralizing antibody activity against 21 SARS-CoV-2 variants in older adults vaccinated with BNT162b2. Nat. Microbiol. 7, 1180–1188 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parry, H. et al. Extended interval BNT162b2 vaccination enhances peak antibody generation. NPJ Vaccines 7, 14 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson, W. W. et al. Mortality associated with influenza and respiratory syncytial virus in the United States. JAMA 289, 179–186 (2003).

    Article  PubMed  Google Scholar 

  • Di Pasquale, A., Preiss, S., Tavares Da Silva, F. & Garcon, N. Vaccine adjuvants: from 1920 to 2015 and beyond. Vaccines 3, 320–343 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsang, P. et al. Immunogenicity and safety of Fluzone® intradermal and high-dose influenza vaccines in older adults ≥65 years of age: a randomized, controlled, phase II trial. Vaccine 32, 2507–2517 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Muszkat, M. et al. Local and systemic immune response in nursing-home elderly following intranasal or intramuscular immunization with inactivated influenza vaccine. Vaccine 21, 1180–1186 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Mosafer, J., Sabbaghi, A. H., Badiee, A., Dehghan, S. & Tafaghodi, M. Preparation, characterization and in vivo evaluation of alginate-coated chitosan and trimethylchitosan nanoparticles loaded with PR8 influenza virus for nasal immunization. Asian J. Pharm. Sci. 14, 216–221 (2019).

    Article  PubMed  Google Scholar 

  • Andrew, M. K. et al. The importance of frailty in the assessment of influenza vaccine effectiveness against influenza-related hospitalization in elderly people. J. Infect. Dis. 216, 405–414 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang, C. Q., Vishwanath, S., Carnell, G. W., Chan, A. C. Y. & Heeney, J. L. Immune imprinting and next-generation coronavirus vaccines. Nat. Microbiol. 8, 1971–1985 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Jirru, E. et al. Impact of influenza on pneumococcal vaccine effectiveness during Streptococcus pneumoniae infection in aged murine lung. Vaccines 8, 298 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, J. et al. Broadly reactive IgG responses to heterologous H5 prime-boost influenza vaccination are shaped by antigenic relatedness to priming strains. mBio 12, e0044921 (2021).

    Article  PubMed  Google Scholar 

  • Kim, J. H., Davis, W. G., Sambhara, S. & Jacob, J. Strategies to alleviate original antigenic sin responses to influenza viruses. Proc. Natl Acad. Sci. USA 109, 13751–13756 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Similar news
    News Archive
    • Ardell Aryana
      Ardell Aryana
      'Teman tapi mesra paling sweet!' - Ardell Aryana gigil Nadzmi Adhwa sarung cincin
      2 Sep 2019
      3
    • Jacqueline Fernandez
      Jacqueline Fernandez
      Jacqueline Fernandez's lawyer says 'fake offence' is painful for actor: 'Nobody has bothered to…'
      17 Aug 2022
      2
    • India Eisley
      India Eisley
      Fact Check: Is ASTRO Cha Eun Woo dating India Eisley, daughter of ...
      27 Jan 2024
      2
    • Rashford
      Rashford
      Rashford and Sancho miss penalties as England lose final after Shaw heroics
      12 Jul 2021
      7
    • TCL
      TCL
      TCL 505 announced with 90Hz NxtVision display and Helio G35 chipset - GSMArena.com news
      7 Feb 2024
      4
    • Sildenafil
      Sildenafil
      What is Viagra? Does it work? What are the side effects? How long does it last?
      12 Apr 2022
      1