Integrative methods reveal multiple drivers of diversification in rice paddy snakes | Scientific Reports
Murphy, J. C. & Voris, H. K. A checklist and key to the homalopsid snakes (Reptilia, Squamata, Serpentes), with the description of new genera. Fieldiana Life Earth Sci. 2014, 1–43 (2014).
Article Google Scholar
Murphy, J. C. Homalopsid Snakes: Evolution in the Mud (Krieger Publishing Company, 2007).
Google Scholar
Jayne, B. C., Voris, H. K. & Ng, P. K. L. How big is too big? Using crustacean-eating snakes (Homalopsidae) to test how anatomy and behaviour affect prey size and feeding performance. Biol. J. Linn. 123, 636–650 (2018).
Article Google Scholar
Fabre, A.-C., Bickford, D., Segall, M. & Herrel, A. The impact of diet, habitat use, and behaviour on head shape evolution in homalopsid snakes. Biol. J. Linn. 118, 634–647 (2016).
Article Google Scholar
Catania, K. C., Leitch, D. B. & Gauthier, D. Function of the appendages in tentacled snakes (Erpeton tentaculatus). J. Exp. Biol. 213, 359–367 (2010).
Article CAS PubMed Google Scholar
Dunson, W. A. & Dunson, M. K. A possible new salt gland in a marine homalopsid snake (Cerberus rhynchops). Copeia 1979, 661–672 (1979).
Article Google Scholar
Bernstein, J. M., Murphy, J. C., Voris, H. K., Brown, R. M. & Ruane, S. Phylogenetics of mud snakes (Squamata: Serpentes: Homalopsidae): A paradox of both undescribed diversity and taxonomic inflation. Mol. Phylogenet. Evol. 160, 107109 (2021).
Article PubMed Google Scholar
Hall, R. Southeast Asia’s changing palaeogeography. Blumea 54, 148–161 (2009).
Article Google Scholar
Hutchison, C. S. Geological Evolution of South-East Asia (Claredon Press, 1989).
Google Scholar
Rainboth, W. J. Fishes of the Cambodian Mekong (Food and Agriculture Organization of the United Nations, 1996).
Google Scholar
Bernstein, J. M. et al. Phylogenomics using fresh and formalin specimens resolves the systematics of Old World Mud Snakes (Serpentes: Homalopsidae) and expands biogeographic inference. Bull. Soc. Syst. Biol. 2(1), 1–24 (2023).
MathSciNet Google Scholar
Zuckerkandl, E. & Pauling, L. Evolutionary divergence and convergence in proteins. in Evolving Genes and Proteins 97–166 (Elsevier, 1965). https://doi.org/10.1016/B978-1-4832-2734-4.50017-6.
Rutschmann, F. Molecular dating of phylogenetic trees: A brief review of current methods that estimate divergence times. Divers. Distrib. 12, 35–48 (2006).
Article Google Scholar
Bromham, L. et al. Bayesian molecular dating: Opening up the black box: Bayesian molecular dating: Opening the black box. Biol. Rev. 93, 1165–1191 (2018).
Article PubMed Google Scholar
Zhang, C., Rabiee, M., Sayyari, E. & Mirarab, S. ASTRAL-III: Polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinform. 19, 153 (2018).
Article Google Scholar
Smith, S. A. & O’Meara, B. C. treePL: Divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics 28, 2689–2690 (2012).
Article CAS PubMed Google Scholar
Bouckaert, R. et al. BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537 (2014).
Article PubMed PubMed Central Google Scholar
Mulcahy, D. G. et al. Estimating divergence dates and evaluating dating methods using phylogenomic and mitochondrial data in squamate reptiles. Mol. Phylogenet. Evol. 65, 974–991 (2012).
Article PubMed Google Scholar
Richards, C. L., Carstens, B. C. & LaceyKnowles, L. Distribution modelling and statistical phylogeography: An integrative framework for generating and testing alternative biogeographical hypotheses. J. Biogeogr. 34, 1833–1845 (2007).
Article Google Scholar
Coelho, F. E. A., Guillory, W. X. & Gehara, M. Coalescent simulations indicate that the São Francisco River is a biogeographic barrier for six vertebrates in a seasonally dry South American forest. Front. Ecol. Evol. 10, 983134 (2022).
Article Google Scholar
Avise, J. C. Phylogeography: The History and Formation of Species (Harvard University Press, 2000).
Book Google Scholar
Hickerson, M. J. et al. Phylogeography’s past, present, and future: 10 years after Avise, 2000. Mol. Phylogenet. Evol. 54, 291–301 (2010).
Article CAS PubMed Google Scholar
Soto-Centeno, J. A. & Simmons, N. B. Environmentally driven phenotypic convergence and niche conservatism accompany speciation in hoary bats. Sci. Rep. 12, 21877 (2022).
Article CAS PubMed PubMed Central ADS Google Scholar
Myers, E. A. et al. Environmental heterogeneity and not vicariant biogeographic barriers generate community-wide population structure in desert-adapted snakes. Mol. Ecol. 28, 4535–4548 (2019).
Article PubMed Google Scholar
Burbrink, F. T., Bernstein, J. M., Kuhn, A., Gehara, M. & Ruane, S. Ecological divergence and the history of gene flow in the nearctic milksnakes (Lampropeltis triangulum complex). Syst. Biol. https://doi.org/10.1093/sysbio/syab093 (2021).
Article Google Scholar
Pahad, G., Montgelard, C. & Jansen van Vuuren, B. Phylogeography and niche modelling: Reciprocal enlightenment. Mammalia 84, 10–25 (2019).
Article Google Scholar
Bernstein, J. M. et al. Undescribed diversity in a widespread, common group of Asian Mud Snakes (Serpentes: Homalopsidae: Hypsiscopus). Ichthyol. Herpetol. 110, 561–574 (2022).
Article Google Scholar
Shen, X. X., Liang, D., Feng, Y. J., Chen, M. Y. & Zhang, P. A versatile and highly efficient toolkit including 102 nuclear markers for vertebrate phylogenomics, tested by resolving the higher level relationships of the Caudata. Mol. Biol. Evol. 30, 2235–2248 (2013).
Article CAS PubMed Google Scholar
Li, J.-N., He, C., Guo, P., Zhang, P. & Liang, D. A workflow of massive identification and application of intron markers using snakes as a model. Ecol. Evol. 7, 10042–10055 (2017).
Article PubMed PubMed Central Google Scholar
Li, J.-N. et al. A large-scale systematic framework of Chinese snakes based on a unified multilocus marker system. Mol. Phylogenet. Evol. 148, 106807 (2020).
Article PubMed Google Scholar
Karin, B. R., Gamble, T. & Jackman, T. R. Optimizing phylogenomics with rapidly evolving long exons: Comparison with anchored hybrid enrichment and ultraconserved elements. Mol. Biol. Evol. 37, 904–922 (2020).
Article CAS PubMed Google Scholar
Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).
Article CAS PubMed Google Scholar
Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).
Article CAS PubMed Google Scholar
Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).
Article CAS PubMed Google Scholar
Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).
Article CAS PubMed PubMed Central Google Scholar
Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2017).
CAS PubMed Google Scholar
Karns, D. R., Lukoschek, V., Osterhage, J., Murphy, J. C. & Voris, H. K. Phylogeny and biogeography of the Enhydris clade (Serpentes: Homalopsidae). Zootaxa 2452, 18–30 (2010).
Article Google Scholar
Rambaut, A. FigTree v1.4.2. (2014).
Yuan, Z.-Y. et al. Red River barrier and Pleistocene climatic fluctuations shaped the genetic structure of Microhyla fissipes complex (Anura: Microhylidae) in southern China and Indochina. Curr. Zool. 62, 531–543 (2016).
Article PubMed PubMed Central Google Scholar
Bain, R. H. & Hurley, M. M. A biogeographic synthesis of the amphibians and reptiles of Indochina. Amnb 2011, 1–138 (2011).
Article Google Scholar
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. (2021).
Wickham, H., François, R., Henry, K. & Müller, K. dplyr: A grammar of data manipulation. (2020).
Oksanen, J. et al. vegan: Community Ecology Package. (2020).
Roberts, D. W. labdsv: Ordination and Multivariate Analysis for Ecology. (2019).
Vu, V., Q. ggbiplot: A ggplot2 based biplot. (2011).
van Buuren, S. & Groothuis-Oudshoorn, K. mice: Multivariate imputation by chained equations in R. J. Stat. Softw. 45, 1–67 (2011).
Article Google Scholar
Fox, J. & Weisberg, S. An R Companion to Applied Regression. (SAGE Publications, 2018).
Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S-PLUS (Springer, 2013).
Google Scholar
Kuhn, M. caret: Classification and Regression Training. (2020).
Kuhn, M. Building predictive models in R Using the caret package. J. Stat. Softw. 28, 1–26 (2008).
Article Google Scholar
Pope, C. H. The Reptiles of China-Natural History of Central Asia Vol. 10 (American Museum of Natural History, 1935).
Google Scholar
Gehara, M. et al. Estimating synchronous demographic changes across populations using hABC and its application for a herpetological community from northeastern Brazil. Mol. Ecol. 26, 4756–4771 (2017).
Article PubMed Google Scholar
Gehara, M., Mazzochinni, G. G. & Burbrink, F. PipeMaster: Inferring population divergence and demographic history with approximate Bayesian computation and supervised machine-learning in R. https://doi.org/10.1101/2020.12.04.410670.
Hudson, R. R. ms a program for generating samples under neutral. Bioinformatics 18, 337–338 (2002).
Article CAS PubMed Google Scholar
Hudson, R. R. Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics 18, 337–338 (2002).
Article CAS PubMed Google Scholar
Pavlidis, P., Laurent, S. & Stephan, W. msABC: A modification of Hudson’s ms to facilitate multi-locus ABC analysis. Mol. Ecol. Resour. 10, 723–727 (2010).
Article CAS PubMed Google Scholar
Heibl, C. PHYLOCH: R language tree plotting tools and interfaces to diverse phylogenetic software packages. (2008). https://rdrr.io/github/fmichonneau/phyloch/
Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190, 231–259 (2006).
Article Google Scholar
Phillips, S. J., Dudík, M. & Schapire, R. E. A maximum entropy approach to species distribution modeling. in Proceedings of the twenty-first international conference on Machine learning 83 (Association for Computing Machinery, 2004). https://doi.org/10.1145/1015330.1015412.
Soto-Centeno, J. A. ENMpipe: A tutorial pipeline for building and testing ecological niche models. (2022).
Urbanek, S. rJava: Low-Level R to Java Interface. (2021).
Kass, J. M. et al. ENMeval 20: Redesigned for customizable and reproducible modeling of species’ niches and distributions. Methods Ecol. Evol. 12, 1602–1608 (2021).
Article Google Scholar
Di Cola, V. et al. ecospat: An R package to support spatial analyses and modeling of species niches and distributions. Ecography 40, 774–787 (2017).
Article ADS Google Scholar
Hijmans, R. J., Phillips, S. & Elith, J. L. and J. dismo: Species Distribution Modeling. (2021).
Pebesma, E. Simple features for R: Standardized support for spatial vector data. R. J. 10, 439 (2018).
Article Google Scholar
Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).
Article ADS Google Scholar
Bivand, R. et al. rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library. (2021).
Bivand, R. & Lewin-Koh, N. maptools: Tools for Handling Spatial Objects. (2021).
Becker, R. A., Wilks, A. R., Brownrigg, R., Minka, T. P. & Deckmyn, A. Maps: Draw Geographical Maps. (2018).
Hijmans, R. J. et al. raster: Geographic Data Analysis and Modeling. (2022).
Lamigueiro, O. P. & Hijmans, R. rasterVis: Visualization Methods for Raster Data. (2022).
Neuwirth, E. RColorBrewer: ColorBrewer Palettes. (2022).
Garnier, S. et al. Rvision - Colorblind-Friendly Color Maps for R. R package version 0.6.2. https://sjmgarnier.github.io/viridis/authors.html (2021).
Wickham, H. ggplot2: ggplot2. WIREs Comp. Stat. 3, 180–185 (2011).
Article Google Scholar
Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38, 541–545 (2015).
Article ADS Google Scholar
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
Article Google Scholar
QGIS Geographic Information System. QGIS. (2018).
Hijmans, R. J. & Graham, C. H. The ability of climate envelope models to predict the effect of climate change on species distributions: comparing climate envelope and mechanistic models. Glob. Change Biol. 12, 2272–2281 (2006).
Article ADS Google Scholar
Guisan, A., Petitpierre, B., Broennimann, O., Daehler, C. & Kueffer, C. Unifying niche shift studies: Insights from biological invasions. Trends Ecol. Evol. 29, 260–269 (2014).
Article PubMed Google Scholar
Liu, C., Wolter, C., Xian, W. & Jeschke, J. M. Most invasive species largely conserve their climatic niche. Proc. Natl. Acad. Sci. USA 117, 23643–23651 (2020).
Article CAS PubMed PubMed Central ADS Google Scholar
Broennimann, O. et al. Measuring ecological niche overlap from occurrence and spatial environmental data: Measuring niche overlap. Glob. Ecol. Biogeogr. 21, 481–497 (2012).
Article Google Scholar
Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution 62, 2868–2883 (2008).
Article PubMed Google Scholar
Warren, D. L., Glor, R. E. & Turelli, M. ENMTools: A toolbox for comparative studies of environmental niche models. Ecography https://doi.org/10.1111/j.1600-0587.2009.06142.x (2010).
Article Google Scholar
Wang, W. et al. Glacial expansion and diversification of an East Asian montane bird, the green-backed tit (Parus monticolus ). J. Biogeogr. 40, 1156–1169 (2013).
Article Google Scholar
Zhang, M., Rao, D., Yang, J., Yu, G. & Wilkinson, J. A. Molecular phylogeography and population structure of a mid-elevation montane frog Leptobrachium ailaonicum in a fragmented habitat of southwest China. Mol. Phylogenet. Evol. 54, 47–58 (2010).
Article PubMed Google Scholar
Zhang, D.-R. et al. Genealogy and palaeodrainage basins in Yunnan Province: Phylogeography of the Yunnan spiny frog, Nanorana yunnanensis (Dicroglossidae). Mol. Ecol. 19, 3406–3420 (2010).
Article PubMed Google Scholar
Wang, H. et al. The phylogeography and population demography of the Yunnan caecilian (Ichthyophis bannanicus): Massive rivers as barriers to gene flow. PLoS ONE 10, e0125770 (2015).
Article PubMed PubMed Central Google Scholar
Klabacka, R. L. et al. Rivers of Indochina as potential drivers of lineage diversification in the spotted flying lizard (Draco maculatus) species complex. Mol. Phylogenet. Evol. 150, 106861 (2020).
Article PubMed Google Scholar
Evans, B. J. et al. Monkeys and toads define areas of endemism on Sulawesi. Evolution 57, 1436–1443 (2003).
PubMed Google Scholar
Nugraha, A. M. S. & Hall, R. Late Cenozoic palaeogeography of Sulawesi, Indonesia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 490, 191–209 (2018).
Article Google Scholar
Hall, R. Southeast Asia’s changing palaeogeography. Blum J. Plant Tax Plant Geogr. 54, 148–161 (2009).
Article Google Scholar
Hall, R. Sundaland and Wallacea. in Biotic evolution and environmental change in Southeast Asia (eds. Gower, D. et al.) 32–78 (Cambridge University Press, 2012).
Hall, R. The palaeogeography of Sundaland and Wallacea since the Late Jurassic. J. Limnol. 72, 1–17 (2013).
Article Google Scholar
Mcguire, J. A. et al. Species delimitation, phylogenomics, and biogeography of sulawesi flying lizards: A diversification history complicated by ancient hybridization, cryptic species, and arrested speciation. Syst. Biol. https://doi.org/10.1093/sysbio/syad020 (2023).
Article PubMed PubMed Central Google Scholar
Handika, H., Achmadi, A. S., Esselstyn, J. A. & Rowe, K. C. Molecular and morphological systematics of the Bunomys division (Rodentia: Muridae), an endemic radiation on Sulawesi. Zool. Scr. 50, 141–154 (2021).
Article Google Scholar
Reilly, S. B. et al. Leap-frog dispersal and mitochondrial introgression: Phylogenomics and biogeography of Limnonectes fanged frogs in the Lesser Sundas Archipelago of Wallacea. J. Biogeogr. 46, 757–769 (2019).
Article Google Scholar
Evans, B. J. et al. Phylogenetics of Fanged frogs: Testing biogeographical hypotheses at the interface of the Asian and Australian faunal zones. Syst. Biol. 52, 794–819 (2003).
PubMed Google Scholar
Evans, B. J., Supriatna, J., Andayani, N. & Melnick, D. J. Diversification of Sulawesi macaque monkeys: Decoupled evolution of mitochondrial and autosomal DNA. Evolution 57, 1931–1946 (2003).
PubMed Google Scholar
Evans, B. J. Coalescent-based analysis of demography. In: Biotic Evolution and Environmental Change in Southeast Asia (eds. Gower, D. et al.) 270–289 (Cambridge University Press, 2012).
Linkem, C. W. et al. Stochastic faunal exchanges drive diversification in widespread Wallacean and Pacific Island lizards (Squamata: Scincidae: Lamprolepis smaragdina). J. Biogeogr. 40, 507–520 (2013).
Article Google Scholar
Eldridge, R. A., Achmadi, A. S., Giarla, T. C., Rowe, K. C. & Esselstyn, J. A. Geographic isolation and elevational gradients promote diversification in an endemic shrew on Sulawesi. Mol. Phylogenet. Evol. 118, 306–317 (2018).
Article PubMed Google Scholar
von Rintelen, T., Stelbrink, B., Marwoto, R. M. & Glaubrecht, M. A snail perspective on the biogeography of Sulawesi, Indonesia: Origin and intra-island dispersal of the viviparous freshwater Gastropod Tylomelania. PLoS ONE 9, e98917 (2014).
Article ADS Google Scholar
Stelbrink, B., Albrecht, C., Hall, R. & von Rintelen, T. The Biogeography of Sulawesi revisited: Is there evidence for a vicariant origin of taxa on Wallace’s “anomalous island”?. Evolution 66, 2252–2271 (2012).
Article PubMed Google Scholar
Reilly, S. B. et al. Diverge and conquer: Phylogenomics of southern Wallacean forest skinks (Genus: Sphenomorphus ) and their colonization of the Lesser Sunda Archipelago. Evolution 76, 2281–2301 (2022).
Article PubMed Google Scholar
Reilly, S. B. et al. Phylogenomic analysis reveals dispersal-driven speciation and divergence with gene flow in lesser Sunda flying lizards (Genus Draco). Syst. Biol. 71, 221–241 (2021).
Article PubMed PubMed Central Google Scholar
Reilly, S. B. et al. Bewildering biogeography: Waves of dispersal and diversification across southern Wallacea by bent-toed geckos (genus: Cyrtodactylus). Mol. Phylogenet. Evol. 186, 107853 (2023).
Article PubMed Google Scholar
Kaefer, I. L., Tsuji-Nishikido, B. M., Mota, E. P., Farias, I. P. & Lima, A. P. The early stages of speciation in Amazonian forest frogs: Phenotypic conservatism despite strong genetic structure. Evol. Biol. 40, 228–245 (2013).
Article Google Scholar
Zamudio, K. R., Bell, R. C. & Mason, N. A. Phenotypes in phylogeography: Species’ traits, environmental variation, and vertebrate diversification. Proc. Natl. Acad. Sci. 113, 8041–8048 (2016).
Article CAS PubMed PubMed Central ADS Google Scholar
Wiens, J. J. Speciation and ecology revisited: Phylogenetic niche conservatism and the origin of species. Evolution 58, 193–197 (2004).
PubMed Google Scholar
Wiens, J. J. & Graham, C. H. Niche conservatism: Integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539 (2005).
Article Google Scholar
Ahmadzadeh, F. et al. Rapid lizard radiation lacking niche conservatism: Ecological diversification within a complex landscape. J. Biogeogr. 40, 1807–1818 (2013).
Article Google Scholar
Enriquez-Urzelai, U. et al. Allopatric speciation, niche conservatism and gradual phenotypic change in the evolution of European green lizards. J. Biogeogr. 49, 2193–2205 (2022).
Article Google Scholar
Voris, H. K. Maps of Pleistocene sea levels in Southeast Asia: Shorelines, river systems and time durations. J. Biogeogr. 27, 1153–1167 (2000).
Article Google Scholar
Sathiamurthy, E. & Voris, H. K. Maps of Holocene sea level transgression and submerged lakes on the Sunda Shelf. Trop. Nat. Hist. 2, 1–44 (2006).
Google Scholar
Li, F. & Li, S. Paleocene-Eocene and Plio-Pleistocene sea-level changes as “species pumps” in Southeast Asia: Evidence from Althepus spiders. Mol. Phylogenet. Evol. 127, 545–555 (2018).
Article PubMed Google Scholar
Shen, K.-N., Jamandre, B. W., Hsu, C.-C., Tzeng, W.-N. & Durand, J.-D. Plio-Pleistocene sea level and temperature fluctuations in the northwestern Pacific promoted speciation in the globally-distributed flathead mullet Mugil cephalus. BMC Evol. Biol. 11, 83 (2011).
Article CAS PubMed PubMed Central Google Scholar
Sholihah, A. et al. Impact of Pleistocene eustatic fluctuations on evolutionary dynamics in Southeast Asian biodiversity hotspots. Syst. Biol. 70, 940–960 (2021).
Article PubMed Google Scholar
Hosner, P. A., Sánchez-González, L. A., Peterson, A. T. & Moyle, R. G. Climate-driven diversification and pleistocene refugia in philippine birds: Evidence from phylogeographic structure and paleoenvironmental niche modeling. Evolution 68, 2658–2674 (2014).
Article PubMed Google Scholar
Hawlitschek, O., Nagy, Z. T. & Glaw, F. Island evolution and systematic revision of Comoran snakes: Why and when subspecies still make sense. PLoS ONE 7, e42970 (2012).
Article CAS PubMed PubMed Central ADS Google Scholar
Zheng, Y. et al. Population genetic patterns of a mangrove-associated frog reveal its colonization history and habitat connectivity. Divers. Distrib. 27, 1584–1600 (2021).
Article Google Scholar
Oaks, J. R., Wood, P. L., Siler, C. D. & Brown, R. M. Generalizing Bayesian phylogenetics to infer shared evolutionary events. Proc. Natl. Acad. Sci. 119, e2121036119 (2022).
Article MathSciNet CAS PubMed PubMed Central Google Scholar
Esselstyn, J. A. & Brown, R. M. The role of repeated sea-level fluctuations in the generation of shrew (Soricidae: Crocidura) diversity in the Philippine Archipelago. Mol. Phylogenet. Evol. 53, 171–181 (2009).
Article CAS PubMed Google Scholar
Lukoschek, V., Osterhage, J. L., Karns, D. R., Murphy, J. C. & Voris, H. K. Phylogeography of the Mekong mud snake (Enhydris subtaeniata): The biogeographic importance of dynamic river drainages and fluctuating sea levels for semiaquatic taxa in Indochina. Ecol. Evol. 1, 330–342 (2011).
Article PubMed PubMed Central Google Scholar
Geissler, P. et al. The lower Mekong: An insurmountable barrier to amphibians in southern Indochina?. Biol. J. Linn. 114, 905–914 (2015).
Article Google Scholar
Guo, P. et al. Out of the Hengduan mountains: Molecular phylogeny and historical biogeography of the Asian water snake genus Trimerodytes (Squamata: Colubridae). Mol. Phylogenet. Evol. 152, 106927 (2020).
Article PubMed Google Scholar
Salles, T. et al. Quaternary landscape dynamics boosted species dispersal across Southeast Asia. Commun. Earth Environ. 2, 240 (2021).
Article ADS Google Scholar
Karns, D. R., Murphy, J. C., Voris, H. K. & Suddeth, J. S. Comparison of semi-aquatic snake communities associated with the Khorat Basin, Thailand. Trop. Nat. Hist. 5, 73–90 (2005).
Google Scholar
Fuchs, J., Ericson, P. G. P., Bonillo, C., Couloux, A. & Pasquet, E. The complex phylogeography of the Indo-Malayan Alophoixus bulbuls with the description of a putative new ring species complex. Mol. Ecol. 24, 5460–5474 (2015).
Article PubMed Google Scholar
Pereira, R. J. & Wake, D. B. Ring species as demonstrations of the continuum of species formation. Mol. Ecol. 24, 5312–5314 (2015).
Article PubMed Google Scholar
Platt, S. G. et al. On the Occurrence of the Khorat Snail-Eating Turtle (Malayemys khoratensis) in Lao People’s Democratic Republic with notes on traditional ecological knowledge and exploitation. Chelonian Conserv. Biol. 21, 11–19 (2022).
Article Google Scholar
Huang, J.-F., Li, S.-Q., Xu, R. & Peng, Y.-Q. East-West genetic differentiation across the Indo-Burma hotspot: Evidence from two closely related dioecious figs. BMC Plant Biol. 23, 321 (2023).
Article CAS PubMed PubMed Central Google Scholar
Yang, Y. & Wu, R. Seasonal variation of precipitation over the Indochina Peninsula and its impact on the South China Sea spring warming. Int. J. Climatol. 39, 1618–1633 (2019).
Article Google Scholar
Hughes, J. B., Round, P. D. & Woodruff, D. S. The Indochinese-Sundaic faunal transition at the Isthmus of Kra: An analysis of resident forest bird species distributions. J. Biogeogr. 30, 569–580 (2003).
Article Google Scholar
Dejtaradol, A. et al. Indochinese-Sundaic faunal transition and phylogeographical divides north of the Isthmus of Kra in Southeast Asian Bulbuls (Aves: Pycnonotidae). J. Biogeogr. 43, 471–483 (2016).
Article Google Scholar