Hot topics close

Integrative methods reveal multiple drivers of diversification in rice paddy snakes | Scientific Reports

Integrative methods reveal multiple drivers of diversification in rice 
paddy snakes  Scientific Reports
Scientific Reports - Integrative methods reveal multiple drivers of diversification in rice paddy snakes
  • Murphy, J. C. & Voris, H. K. A checklist and key to the homalopsid snakes (Reptilia, Squamata, Serpentes), with the description of new genera. Fieldiana Life Earth Sci. 2014, 1–43 (2014).

    Article  Google Scholar 

  • Murphy, J. C. Homalopsid Snakes: Evolution in the Mud (Krieger Publishing Company, 2007).

    Google Scholar 

  • Jayne, B. C., Voris, H. K. & Ng, P. K. L. How big is too big? Using crustacean-eating snakes (Homalopsidae) to test how anatomy and behaviour affect prey size and feeding performance. Biol. J. Linn. 123, 636–650 (2018).

    Article  Google Scholar 

  • Fabre, A.-C., Bickford, D., Segall, M. & Herrel, A. The impact of diet, habitat use, and behaviour on head shape evolution in homalopsid snakes. Biol. J. Linn. 118, 634–647 (2016).

    Article  Google Scholar 

  • Catania, K. C., Leitch, D. B. & Gauthier, D. Function of the appendages in tentacled snakes (Erpeton tentaculatus). J. Exp. Biol. 213, 359–367 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Dunson, W. A. & Dunson, M. K. A possible new salt gland in a marine homalopsid snake (Cerberus rhynchops). Copeia 1979, 661–672 (1979).

    Article  Google Scholar 

  • Bernstein, J. M., Murphy, J. C., Voris, H. K., Brown, R. M. & Ruane, S. Phylogenetics of mud snakes (Squamata: Serpentes: Homalopsidae): A paradox of both undescribed diversity and taxonomic inflation. Mol. Phylogenet. Evol. 160, 107109 (2021).

    Article  PubMed  Google Scholar 

  • Hall, R. Southeast Asia’s changing palaeogeography. Blumea 54, 148–161 (2009).

    Article  Google Scholar 

  • Hutchison, C. S. Geological Evolution of South-East Asia (Claredon Press, 1989).

    Google Scholar 

  • Rainboth, W. J. Fishes of the Cambodian Mekong (Food and Agriculture Organization of the United Nations, 1996).

    Google Scholar 

  • Bernstein, J. M. et al. Phylogenomics using fresh and formalin specimens resolves the systematics of Old World Mud Snakes (Serpentes: Homalopsidae) and expands biogeographic inference. Bull. Soc. Syst. Biol. 2(1), 1–24 (2023).

    MathSciNet  Google Scholar 

  • Zuckerkandl, E. & Pauling, L. Evolutionary divergence and convergence in proteins. in Evolving Genes and Proteins 97–166 (Elsevier, 1965). https://doi.org/10.1016/B978-1-4832-2734-4.50017-6.

  • Rutschmann, F. Molecular dating of phylogenetic trees: A brief review of current methods that estimate divergence times. Divers. Distrib. 12, 35–48 (2006).

    Article  Google Scholar 

  • Bromham, L. et al. Bayesian molecular dating: Opening up the black box: Bayesian molecular dating: Opening the black box. Biol. Rev. 93, 1165–1191 (2018).

    Article  PubMed  Google Scholar 

  • Zhang, C., Rabiee, M., Sayyari, E. & Mirarab, S. ASTRAL-III: Polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinform. 19, 153 (2018).

    Article  Google Scholar 

  • Smith, S. A. & O’Meara, B. C. treePL: Divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics 28, 2689–2690 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Bouckaert, R. et al. BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Mulcahy, D. G. et al. Estimating divergence dates and evaluating dating methods using phylogenomic and mitochondrial data in squamate reptiles. Mol. Phylogenet. Evol. 65, 974–991 (2012).

    Article  PubMed  Google Scholar 

  • Richards, C. L., Carstens, B. C. & LaceyKnowles, L. Distribution modelling and statistical phylogeography: An integrative framework for generating and testing alternative biogeographical hypotheses. J. Biogeogr. 34, 1833–1845 (2007).

    Article  Google Scholar 

  • Coelho, F. E. A., Guillory, W. X. & Gehara, M. Coalescent simulations indicate that the São Francisco River is a biogeographic barrier for six vertebrates in a seasonally dry South American forest. Front. Ecol. Evol. 10, 983134 (2022).

    Article  Google Scholar 

  • Avise, J. C. Phylogeography: The History and Formation of Species (Harvard University Press, 2000).

    Book  Google Scholar 

  • Hickerson, M. J. et al. Phylogeography’s past, present, and future: 10 years after Avise, 2000. Mol. Phylogenet. Evol. 54, 291–301 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Soto-Centeno, J. A. & Simmons, N. B. Environmentally driven phenotypic convergence and niche conservatism accompany speciation in hoary bats. Sci. Rep. 12, 21877 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Myers, E. A. et al. Environmental heterogeneity and not vicariant biogeographic barriers generate community-wide population structure in desert-adapted snakes. Mol. Ecol. 28, 4535–4548 (2019).

    Article  PubMed  Google Scholar 

  • Burbrink, F. T., Bernstein, J. M., Kuhn, A., Gehara, M. & Ruane, S. Ecological divergence and the history of gene flow in the nearctic milksnakes (Lampropeltis triangulum complex). Syst. Biol. https://doi.org/10.1093/sysbio/syab093 (2021).

    Article  Google Scholar 

  • Pahad, G., Montgelard, C. & Jansen van Vuuren, B. Phylogeography and niche modelling: Reciprocal enlightenment. Mammalia 84, 10–25 (2019).

    Article  Google Scholar 

  • Bernstein, J. M. et al. Undescribed diversity in a widespread, common group of Asian Mud Snakes (Serpentes: Homalopsidae: Hypsiscopus). Ichthyol. Herpetol. 110, 561–574 (2022).

    Article  Google Scholar 

  • Shen, X. X., Liang, D., Feng, Y. J., Chen, M. Y. & Zhang, P. A versatile and highly efficient toolkit including 102 nuclear markers for vertebrate phylogenomics, tested by resolving the higher level relationships of the Caudata. Mol. Biol. Evol. 30, 2235–2248 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Li, J.-N., He, C., Guo, P., Zhang, P. & Liang, D. A workflow of massive identification and application of intron markers using snakes as a model. Ecol. Evol. 7, 10042–10055 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, J.-N. et al. A large-scale systematic framework of Chinese snakes based on a unified multilocus marker system. Mol. Phylogenet. Evol. 148, 106807 (2020).

    Article  PubMed  Google Scholar 

  • Karin, B. R., Gamble, T. & Jackman, T. R. Optimizing phylogenomics with rapidly evolving long exons: Comparison with anchored hybrid enrichment and ultraconserved elements. Mol. Biol. Evol. 37, 904–922 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2017).

    CAS  PubMed  Google Scholar 

  • Karns, D. R., Lukoschek, V., Osterhage, J., Murphy, J. C. & Voris, H. K. Phylogeny and biogeography of the Enhydris clade (Serpentes: Homalopsidae). Zootaxa 2452, 18–30 (2010).

    Article  Google Scholar 

  • Rambaut, A. FigTree v1.4.2. (2014).

  • Yuan, Z.-Y. et al. Red River barrier and Pleistocene climatic fluctuations shaped the genetic structure of Microhyla fissipes complex (Anura: Microhylidae) in southern China and Indochina. Curr. Zool. 62, 531–543 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Bain, R. H. & Hurley, M. M. A biogeographic synthesis of the amphibians and reptiles of Indochina. Amnb 2011, 1–138 (2011).

    Article  Google Scholar 

  • R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. (2021).

  • Wickham, H., François, R., Henry, K. & Müller, K. dplyr: A grammar of data manipulation. (2020).

  • Oksanen, J. et al. vegan: Community Ecology Package. (2020).

  • Roberts, D. W. labdsv: Ordination and Multivariate Analysis for Ecology. (2019).

  • Vu, V., Q. ggbiplot: A ggplot2 based biplot. (2011).

  • van Buuren, S. & Groothuis-Oudshoorn, K. mice: Multivariate imputation by chained equations in R. J. Stat. Softw. 45, 1–67 (2011).

    Article  Google Scholar 

  • Fox, J. & Weisberg, S. An R Companion to Applied Regression. (SAGE Publications, 2018).

  • Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S-PLUS (Springer, 2013).

    Google Scholar 

  • Kuhn, M. caret: Classification and Regression Training. (2020).

  • Kuhn, M. Building predictive models in R Using the caret package. J. Stat. Softw. 28, 1–26 (2008).

    Article  Google Scholar 

  • Pope, C. H. The Reptiles of China-Natural History of Central Asia Vol. 10 (American Museum of Natural History, 1935).

    Google Scholar 

  • Gehara, M. et al. Estimating synchronous demographic changes across populations using hABC and its application for a herpetological community from northeastern Brazil. Mol. Ecol. 26, 4756–4771 (2017).

    Article  PubMed  Google Scholar 

  • Gehara, M., Mazzochinni, G. G. & Burbrink, F. PipeMaster: Inferring population divergence and demographic history with approximate Bayesian computation and supervised machine-learning in R. https://doi.org/10.1101/2020.12.04.410670.

  • Hudson, R. R. ms a program for generating samples under neutral. Bioinformatics 18, 337–338 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Hudson, R. R. Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics 18, 337–338 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Pavlidis, P., Laurent, S. & Stephan, W. msABC: A modification of Hudson’s ms to facilitate multi-locus ABC analysis. Mol. Ecol. Resour. 10, 723–727 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Heibl, C. PHYLOCH: R language tree plotting tools and interfaces to diverse phylogenetic software packages. (2008). https://rdrr.io/github/fmichonneau/phyloch/

  • Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190, 231–259 (2006).

    Article  Google Scholar 

  • Phillips, S. J., Dudík, M. & Schapire, R. E. A maximum entropy approach to species distribution modeling. in Proceedings of the twenty-first international conference on Machine learning 83 (Association for Computing Machinery, 2004). https://doi.org/10.1145/1015330.1015412.

  • Soto-Centeno, J. A. ENMpipe: A tutorial pipeline for building and testing ecological niche models. (2022).

  • Urbanek, S. rJava: Low-Level R to Java Interface. (2021).

  • Kass, J. M. et al. ENMeval 20: Redesigned for customizable and reproducible modeling of species’ niches and distributions. Methods Ecol. Evol. 12, 1602–1608 (2021).

    Article  Google Scholar 

  • Di Cola, V. et al. ecospat: An R package to support spatial analyses and modeling of species niches and distributions. Ecography 40, 774–787 (2017).

    Article  ADS  Google Scholar 

  • Hijmans, R. J., Phillips, S. & Elith, J. L. and J. dismo: Species Distribution Modeling. (2021).

  • Pebesma, E. Simple features for R: Standardized support for spatial vector data. R. J. 10, 439 (2018).

    Article  Google Scholar 

  • Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).

    Article  ADS  Google Scholar 

  • Bivand, R. et al. rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library. (2021).

  • Bivand, R. & Lewin-Koh, N. maptools: Tools for Handling Spatial Objects. (2021).

  • Becker, R. A., Wilks, A. R., Brownrigg, R., Minka, T. P. & Deckmyn, A. Maps: Draw Geographical Maps. (2018).

  • Hijmans, R. J. et al. raster: Geographic Data Analysis and Modeling. (2022).

  • Lamigueiro, O. P. & Hijmans, R. rasterVis: Visualization Methods for Raster Data. (2022).

  • Neuwirth, E. RColorBrewer: ColorBrewer Palettes. (2022).

  • Garnier, S. et al. Rvision - Colorblind-Friendly Color Maps for R. R package version 0.6.2. https://sjmgarnier.github.io/viridis/authors.html (2021).

  • Wickham, H. ggplot2: ggplot2. WIREs Comp. Stat. 3, 180–185 (2011).

    Article  Google Scholar 

  • Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38, 541–545 (2015).

    Article  ADS  Google Scholar 

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article  Google Scholar 

  • QGIS Geographic Information System. QGIS. (2018).

  • Hijmans, R. J. & Graham, C. H. The ability of climate envelope models to predict the effect of climate change on species distributions: comparing climate envelope and mechanistic models. Glob. Change Biol. 12, 2272–2281 (2006).

    Article  ADS  Google Scholar 

  • Guisan, A., Petitpierre, B., Broennimann, O., Daehler, C. & Kueffer, C. Unifying niche shift studies: Insights from biological invasions. Trends Ecol. Evol. 29, 260–269 (2014).

    Article  PubMed  Google Scholar 

  • Liu, C., Wolter, C., Xian, W. & Jeschke, J. M. Most invasive species largely conserve their climatic niche. Proc. Natl. Acad. Sci. USA 117, 23643–23651 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Broennimann, O. et al. Measuring ecological niche overlap from occurrence and spatial environmental data: Measuring niche overlap. Glob. Ecol. Biogeogr. 21, 481–497 (2012).

    Article  Google Scholar 

  • Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution 62, 2868–2883 (2008).

    Article  PubMed  Google Scholar 

  • Warren, D. L., Glor, R. E. & Turelli, M. ENMTools: A toolbox for comparative studies of environmental niche models. Ecography https://doi.org/10.1111/j.1600-0587.2009.06142.x (2010).

    Article  Google Scholar 

  • Wang, W. et al. Glacial expansion and diversification of an East Asian montane bird, the green-backed tit (Parus monticolus ). J. Biogeogr. 40, 1156–1169 (2013).

    Article  Google Scholar 

  • Zhang, M., Rao, D., Yang, J., Yu, G. & Wilkinson, J. A. Molecular phylogeography and population structure of a mid-elevation montane frog Leptobrachium ailaonicum in a fragmented habitat of southwest China. Mol. Phylogenet. Evol. 54, 47–58 (2010).

    Article  PubMed  Google Scholar 

  • Zhang, D.-R. et al. Genealogy and palaeodrainage basins in Yunnan Province: Phylogeography of the Yunnan spiny frog, Nanorana yunnanensis (Dicroglossidae). Mol. Ecol. 19, 3406–3420 (2010).

    Article  PubMed  Google Scholar 

  • Wang, H. et al. The phylogeography and population demography of the Yunnan caecilian (Ichthyophis bannanicus): Massive rivers as barriers to gene flow. PLoS ONE 10, e0125770 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Klabacka, R. L. et al. Rivers of Indochina as potential drivers of lineage diversification in the spotted flying lizard (Draco maculatus) species complex. Mol. Phylogenet. Evol. 150, 106861 (2020).

    Article  PubMed  Google Scholar 

  • Evans, B. J. et al. Monkeys and toads define areas of endemism on Sulawesi. Evolution 57, 1436–1443 (2003).

    PubMed  Google Scholar 

  • Nugraha, A. M. S. & Hall, R. Late Cenozoic palaeogeography of Sulawesi, Indonesia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 490, 191–209 (2018).

    Article  Google Scholar 

  • Hall, R. Southeast Asia’s changing palaeogeography. Blum J. Plant Tax Plant Geogr. 54, 148–161 (2009).

    Article  Google Scholar 

  • Hall, R. Sundaland and Wallacea. in Biotic evolution and environmental change in Southeast Asia (eds. Gower, D. et al.) 32–78 (Cambridge University Press, 2012).

  • Hall, R. The palaeogeography of Sundaland and Wallacea since the Late Jurassic. J. Limnol. 72, 1–17 (2013).

    Article  Google Scholar 

  • Mcguire, J. A. et al. Species delimitation, phylogenomics, and biogeography of sulawesi flying lizards: A diversification history complicated by ancient hybridization, cryptic species, and arrested speciation. Syst. Biol. https://doi.org/10.1093/sysbio/syad020 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Handika, H., Achmadi, A. S., Esselstyn, J. A. & Rowe, K. C. Molecular and morphological systematics of the Bunomys division (Rodentia: Muridae), an endemic radiation on Sulawesi. Zool. Scr. 50, 141–154 (2021).

    Article  Google Scholar 

  • Reilly, S. B. et al. Leap-frog dispersal and mitochondrial introgression: Phylogenomics and biogeography of Limnonectes fanged frogs in the Lesser Sundas Archipelago of Wallacea. J. Biogeogr. 46, 757–769 (2019).

    Article  Google Scholar 

  • Evans, B. J. et al. Phylogenetics of Fanged frogs: Testing biogeographical hypotheses at the interface of the Asian and Australian faunal zones. Syst. Biol. 52, 794–819 (2003).

    PubMed  Google Scholar 

  • Evans, B. J., Supriatna, J., Andayani, N. & Melnick, D. J. Diversification of Sulawesi macaque monkeys: Decoupled evolution of mitochondrial and autosomal DNA. Evolution 57, 1931–1946 (2003).

    PubMed  Google Scholar 

  • Evans, B. J. Coalescent-based analysis of demography. In: Biotic Evolution and Environmental Change in Southeast Asia (eds. Gower, D. et al.) 270–289 (Cambridge University Press, 2012).

  • Linkem, C. W. et al. Stochastic faunal exchanges drive diversification in widespread Wallacean and Pacific Island lizards (Squamata: Scincidae: Lamprolepis smaragdina). J. Biogeogr. 40, 507–520 (2013).

    Article  Google Scholar 

  • Eldridge, R. A., Achmadi, A. S., Giarla, T. C., Rowe, K. C. & Esselstyn, J. A. Geographic isolation and elevational gradients promote diversification in an endemic shrew on Sulawesi. Mol. Phylogenet. Evol. 118, 306–317 (2018).

    Article  PubMed  Google Scholar 

  • von Rintelen, T., Stelbrink, B., Marwoto, R. M. & Glaubrecht, M. A snail perspective on the biogeography of Sulawesi, Indonesia: Origin and intra-island dispersal of the viviparous freshwater Gastropod Tylomelania. PLoS ONE 9, e98917 (2014).

    Article  ADS  Google Scholar 

  • Stelbrink, B., Albrecht, C., Hall, R. & von Rintelen, T. The Biogeography of Sulawesi revisited: Is there evidence for a vicariant origin of taxa on Wallace’s “anomalous island”?. Evolution 66, 2252–2271 (2012).

    Article  PubMed  Google Scholar 

  • Reilly, S. B. et al. Diverge and conquer: Phylogenomics of southern Wallacean forest skinks (Genus: Sphenomorphus ) and their colonization of the Lesser Sunda Archipelago. Evolution 76, 2281–2301 (2022).

    Article  PubMed  Google Scholar 

  • Reilly, S. B. et al. Phylogenomic analysis reveals dispersal-driven speciation and divergence with gene flow in lesser Sunda flying lizards (Genus Draco). Syst. Biol. 71, 221–241 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Reilly, S. B. et al. Bewildering biogeography: Waves of dispersal and diversification across southern Wallacea by bent-toed geckos (genus: Cyrtodactylus). Mol. Phylogenet. Evol. 186, 107853 (2023).

    Article  PubMed  Google Scholar 

  • Kaefer, I. L., Tsuji-Nishikido, B. M., Mota, E. P., Farias, I. P. & Lima, A. P. The early stages of speciation in Amazonian forest frogs: Phenotypic conservatism despite strong genetic structure. Evol. Biol. 40, 228–245 (2013).

    Article  Google Scholar 

  • Zamudio, K. R., Bell, R. C. & Mason, N. A. Phenotypes in phylogeography: Species’ traits, environmental variation, and vertebrate diversification. Proc. Natl. Acad. Sci. 113, 8041–8048 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Wiens, J. J. Speciation and ecology revisited: Phylogenetic niche conservatism and the origin of species. Evolution 58, 193–197 (2004).

    PubMed  Google Scholar 

  • Wiens, J. J. & Graham, C. H. Niche conservatism: Integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539 (2005).

    Article  Google Scholar 

  • Ahmadzadeh, F. et al. Rapid lizard radiation lacking niche conservatism: Ecological diversification within a complex landscape. J. Biogeogr. 40, 1807–1818 (2013).

    Article  Google Scholar 

  • Enriquez-Urzelai, U. et al. Allopatric speciation, niche conservatism and gradual phenotypic change in the evolution of European green lizards. J. Biogeogr. 49, 2193–2205 (2022).

    Article  Google Scholar 

  • Voris, H. K. Maps of Pleistocene sea levels in Southeast Asia: Shorelines, river systems and time durations. J. Biogeogr. 27, 1153–1167 (2000).

    Article  Google Scholar 

  • Sathiamurthy, E. & Voris, H. K. Maps of Holocene sea level transgression and submerged lakes on the Sunda Shelf. Trop. Nat. Hist. 2, 1–44 (2006).

    Google Scholar 

  • Li, F. & Li, S. Paleocene-Eocene and Plio-Pleistocene sea-level changes as “species pumps” in Southeast Asia: Evidence from Althepus spiders. Mol. Phylogenet. Evol. 127, 545–555 (2018).

    Article  PubMed  Google Scholar 

  • Shen, K.-N., Jamandre, B. W., Hsu, C.-C., Tzeng, W.-N. & Durand, J.-D. Plio-Pleistocene sea level and temperature fluctuations in the northwestern Pacific promoted speciation in the globally-distributed flathead mullet Mugil cephalus. BMC Evol. Biol. 11, 83 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sholihah, A. et al. Impact of Pleistocene eustatic fluctuations on evolutionary dynamics in Southeast Asian biodiversity hotspots. Syst. Biol. 70, 940–960 (2021).

    Article  PubMed  Google Scholar 

  • Hosner, P. A., Sánchez-González, L. A., Peterson, A. T. & Moyle, R. G. Climate-driven diversification and pleistocene refugia in philippine birds: Evidence from phylogeographic structure and paleoenvironmental niche modeling. Evolution 68, 2658–2674 (2014).

    Article  PubMed  Google Scholar 

  • Hawlitschek, O., Nagy, Z. T. & Glaw, F. Island evolution and systematic revision of Comoran snakes: Why and when subspecies still make sense. PLoS ONE 7, e42970 (2012).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Zheng, Y. et al. Population genetic patterns of a mangrove-associated frog reveal its colonization history and habitat connectivity. Divers. Distrib. 27, 1584–1600 (2021).

    Article  Google Scholar 

  • Oaks, J. R., Wood, P. L., Siler, C. D. & Brown, R. M. Generalizing Bayesian phylogenetics to infer shared evolutionary events. Proc. Natl. Acad. Sci. 119, e2121036119 (2022).

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  • Esselstyn, J. A. & Brown, R. M. The role of repeated sea-level fluctuations in the generation of shrew (Soricidae: Crocidura) diversity in the Philippine Archipelago. Mol. Phylogenet. Evol. 53, 171–181 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Lukoschek, V., Osterhage, J. L., Karns, D. R., Murphy, J. C. & Voris, H. K. Phylogeography of the Mekong mud snake (Enhydris subtaeniata): The biogeographic importance of dynamic river drainages and fluctuating sea levels for semiaquatic taxa in Indochina. Ecol. Evol. 1, 330–342 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Geissler, P. et al. The lower Mekong: An insurmountable barrier to amphibians in southern Indochina?. Biol. J. Linn. 114, 905–914 (2015).

    Article  Google Scholar 

  • Guo, P. et al. Out of the Hengduan mountains: Molecular phylogeny and historical biogeography of the Asian water snake genus Trimerodytes (Squamata: Colubridae). Mol. Phylogenet. Evol. 152, 106927 (2020).

    Article  PubMed  Google Scholar 

  • Salles, T. et al. Quaternary landscape dynamics boosted species dispersal across Southeast Asia. Commun. Earth Environ. 2, 240 (2021).

    Article  ADS  Google Scholar 

  • Karns, D. R., Murphy, J. C., Voris, H. K. & Suddeth, J. S. Comparison of semi-aquatic snake communities associated with the Khorat Basin, Thailand. Trop. Nat. Hist. 5, 73–90 (2005).

    Google Scholar 

  • Fuchs, J., Ericson, P. G. P., Bonillo, C., Couloux, A. & Pasquet, E. The complex phylogeography of the Indo-Malayan Alophoixus bulbuls with the description of a putative new ring species complex. Mol. Ecol. 24, 5460–5474 (2015).

    Article  PubMed  Google Scholar 

  • Pereira, R. J. & Wake, D. B. Ring species as demonstrations of the continuum of species formation. Mol. Ecol. 24, 5312–5314 (2015).

    Article  PubMed  Google Scholar 

  • Platt, S. G. et al. On the Occurrence of the Khorat Snail-Eating Turtle (Malayemys khoratensis) in Lao People’s Democratic Republic with notes on traditional ecological knowledge and exploitation. Chelonian Conserv. Biol. 21, 11–19 (2022).

    Article  Google Scholar 

  • Huang, J.-F., Li, S.-Q., Xu, R. & Peng, Y.-Q. East-West genetic differentiation across the Indo-Burma hotspot: Evidence from two closely related dioecious figs. BMC Plant Biol. 23, 321 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, Y. & Wu, R. Seasonal variation of precipitation over the Indochina Peninsula and its impact on the South China Sea spring warming. Int. J. Climatol. 39, 1618–1633 (2019).

    Article  Google Scholar 

  • Hughes, J. B., Round, P. D. & Woodruff, D. S. The Indochinese-Sundaic faunal transition at the Isthmus of Kra: An analysis of resident forest bird species distributions. J. Biogeogr. 30, 569–580 (2003).

    Article  Google Scholar 

  • Dejtaradol, A. et al. Indochinese-Sundaic faunal transition and phylogeographical divides north of the Isthmus of Kra in Southeast Asian Bulbuls (Aves: Pycnonotidae). J. Biogeogr. 43, 471–483 (2016).

    Article  Google Scholar 

  • News Archive
    • India vs Uzbekistan
      India vs Uzbekistan
      IND vs UZB AFC Asian Cup 2023 Live Score: India 0-3 Uzbekistan ...
      18 Jan 2024
      2
    • Omari Forson
      Omari Forson
      Who is Omari Forson? Manchester United teenager makes first start ...
      24 Feb 2024
      2
    • Nicotinamide
      Nicotinamide
      Global Vitamin PP (Niacin and Niacinamide) Market is slated to grow rapidly in the coming years wih Top Companies ...
      28 Dec 2019
      1
    • Mikaela Shiffrin
      Mikaela Shiffrin
      Mikaela Shiffrin, longtime boyfriend Aleksander Aamodt Kilde engaged
      5 Apr 2024
      3
    This week's most popular news